Synthesis and Characterisation of Fluorescent Carbon Nanodots Produced in Ionic Liquids by Laser Ablation

Carbon nanodots (C‐dots) with an average size of 1.5 and 3.0 nm were produced by laser ablation in different imidazolium ionic liquids (ILs), namely, 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate (BMI.BF4), 1‐n‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2) and 1‐n‐octyl‐3...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2016-01, Vol.22 (1), p.138-143
Hauptverfasser: Castro, Hemerson P. S., Souza, Virgínia S., Scholten, Jackson D., Dias, Janine H., Fernandes, Jesum A., Rodembusch, Fabiano S., dos Reis, Roberto, Dupont, Jairton, Teixeira, Sérgio R., Correia, Ricardo R. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Carbon nanodots (C‐dots) with an average size of 1.5 and 3.0 nm were produced by laser ablation in different imidazolium ionic liquids (ILs), namely, 1‐n‐butyl‐3‐methylimidazolium tetrafluoroborate (BMI.BF4), 1‐n‐butyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (BMI.NTf2) and 1‐n‐octyl‐3‐methylimidazolium bis(trifluoromethanesulfonyl)imide (OMI.NTf2). The mean size of the nanoparticles is influenced by the imidazolium alkyl side chain but not by the nature of the anion. However, by varying the anion (BF4 vs. NTf2) it was possible to detect a significant modification of the fluorescence properties. The C‐dots are much probably stabilised by an electrostatic layer of the IL and this interaction has played an important role with regard to the formation, stabilisation and photoluminescence properties of the nanodots. A tuneable broadband fluorescence emission from the colloidal suspension was observed under ultraviolet/visible excitation with fluorescence lifetimes fitted by a multi‐exponential decay with average values around 7 ns. A question of the IL: Carbon nanodots (C‐dots) produced by laser ablation in imidazolium ionic liquids (ILs) showed a tuneable broadband fluorescence emission under ultraviolet/visible excitation. The formation, stabilisation and photophysics of the nanoparticles depend on the nature of the ionic liquid (see figure).
ISSN:0947-6539
1521-3765
DOI:10.1002/chem.201503286