An artificial Rb atom in a semiconductor with lifetime-limited linewidth
We report results important for the creation of a best-of-both-worlds quantum hybrid system consisting of a solid-state source of single photons and an atomic ensemble as quantum memory. We generate single photons from a GaAs quantum dot (QD) frequency matched to the Rb D2 transitions and then use t...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2015-12, Vol.92 (24), Article 245439 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We report results important for the creation of a best-of-both-worlds quantum hybrid system consisting of a solid-state source of single photons and an atomic ensemble as quantum memory. We generate single photons from a GaAs quantum dot (QD) frequency matched to the Rb D2 transitions and then use the Rb transitions to analyze spectrally the quantum dot photons. We demonstrate lifetime-limited QD linewidths (1.42 GHz) with both resonant and nonresonant excitation. The QD resonance fluorescence in the low power regime is dominated by Rayleigh scattering, a route to match quantum dot and Rb atom linewidths and to shape the temporal wave packet of the QD photons. Noise in the solid-state environment is relatively benign: there is a blinking of the resonance fluorescence at MHz rates but negligible dephasing of the QD excitonic transition. We therefore demonstrate significant progress towards the realization of an ideal solid-state source of single photons at a key wavelength for quantum technologies. |
---|---|
ISSN: | 1098-0121 2469-9950 1550-235X 2469-9969 |
DOI: | 10.1103/PhysRevB.92.245439 |