Heat Transfer and Crystallization Modeling during Compression Molding of Thermoplastic Composite Parts

We present in this paper, the coupling of heat transfer to the crystallization of composite in a closed mold. The composite is based on thermoplastic resin (low viscosity PA 66) with glass fiber (50% volume fraction). In order to realize this coupling, an accurate characterizationof thermo physical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key Engineering Materials 2015-07, Vol.651-653, p.1507-1512
Hauptverfasser: Pignon, Baptiste, Orange, Gilles, Delaunay, Didier, Boyard, Nicolas, Bailleul, Jean Luc, Faraj, Jalal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present in this paper, the coupling of heat transfer to the crystallization of composite in a closed mold. The composite is based on thermoplastic resin (low viscosity PA 66) with glass fiber (50% volume fraction). In order to realize this coupling, an accurate characterizationof thermo physical properties in process conditions, especially in the molten and solid state is needed. In addition, theidentification of the parameters of crystallization kinetics is required. Therefore, we present the methods that were used to study the thermo physical properties as the thermal conductivity, heat capacity and the specific volume. Moreover, the kinetic of crystallization was estimated over a large temperature range by using Flash DSC and classical DSC. In order to validate the measurements, the whole process was modeled by finite elements. The model includes the resolution of the strong coupling between the heat transfer and crystallization. Finally, the experimental and numerical results were compared.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.651-653.1507