Numerical research on the cavitation characteristics for typical conditions of a centrifugal pump with whole flow passage
Cavitation is one of the key issues affecting the safe and stable operation of centrifugal pumps. This research conducted numerical simulations of the 3-D turbulent flow in the whole flow passage of a centrifugal pump using RANS method. The calculation results of cavitation characteristics agreed we...
Gespeichert in:
Veröffentlicht in: | IOP conference series. Materials Science and Engineering 2015-01, Vol.72 (3), p.32027 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Cavitation is one of the key issues affecting the safe and stable operation of centrifugal pumps. This research conducted numerical simulations of the 3-D turbulent flow in the whole flow passage of a centrifugal pump using RANS method. The calculation results of cavitation characteristics agreed well with the experimental results, which were based on SST k-ω turbulence model and Zwart-Gerber-Belamri cavitation model. This paper analysed the cavitation development process and the corresponding pump performance for three typical conditions, namely large discharge condition, design discharge condition and small discharge condition, by changing the available Net Positive Suction Head (NPSHa). For large discharge condition, the incipient NPSHa was large, while for design discharge condition and small discharge condition, the incipient NPSHa values were almost the same and both small. As the flow rate decreased, the critical NPSHa decreased as well, and the cavitation positons gradually shift from the pressure surfaces of some blades to the suction surfaces. At the same time, the tongue has greater effect with larger flow rate and the cavitation becomes less unsteady with the decrease of flow rate. With similar vapour volume, cavitation on the blade pressure side more easily leads to the drop of pump performance. Therefore, more attention should be paid to the cavitation characteristics of centrifugal pumps in large flow conditions in hydraulic design stage. |
---|---|
ISSN: | 1757-899X 1757-8981 1757-899X |
DOI: | 10.1088/1757-899X/72/3/032027 |