An implantable neurostimulator with an integrated high-voltage inductive power- recovery frontend
This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery fron- tend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full- wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outpu...
Gespeichert in:
Veröffentlicht in: | Journal of semiconductors 2014-10, Vol.35 (10), p.163-170 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper present a highly-integrated neurostimulator with an on-chip inductive power-recovery fron- tend and high-voltage stimulus generator. In particular, the power-recovery frontend includes a high-voltage full- wave rectifier (up to 100 V AC input), high-voltage series regulators (24/5 V outputs) and a linear regulator (1.8/ 3.3 V output) with bandgap voltage reference. With the high voltage output of the series regulator, the proposed neurostimulator could deliver a considerably large current in high electrode-tissue contact impedance. This neu- rostimulator has been fabricated in a CSMC 1 μm 5/40/700 V BCD'process and the total silicon area including pads is 5.8 mm2. Preliminary tests are successful as the neurostimulator shows good stability under a 13.56 MHz AC supply. Compared to previously reported works, our design has advantages of a wide induced voltage range (26-100 V), high output voltage (up to 24 V) and high-level integration, which are suitable for implantable neu- rostimulators. |
---|---|
ISSN: | 1674-4926 |
DOI: | 10.1088/1674-4926/35/10/105012 |