Microstructure Characterization of a Complex Branched Low-density Polyethylene
A low-density polyethylene (LDPE) resin with excellent processing and film-forming properties is fractionated through temperature rising elution fractionation (TREF) technique. The chain structures of both the original resin and its fractions are further analyzed using high-temperature gel permeatio...
Gespeichert in:
Veröffentlicht in: | Chinese journal of polymer science 2015-03, Vol.33 (3), p.508-522 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A low-density polyethylene (LDPE) resin with excellent processing and film-forming properties is fractionated through temperature rising elution fractionation (TREF) technique. The chain structures of both the original resin and its fractions are further analyzed using high-temperature gel permeation chromatography (GPC) coupled with triple detectors (refractive index (RI)-light scattering (LS)-viscometer (VIS)), ^13C-nuclear magnetic resonance spectroscopy (^13C-NMR), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and successive self- nucleation/annealing (SSA) thermal fractionation. The ^13C-NMR results show that the original resin has both short chain branch (SCB) (2.82 mol%) and long chain branch (LCB) (0.52 mol%) structures. The FTIR results indicate that the methyl numbers (per 1000 C) of the fractions gradually decrease from 81 to 46 with increasing elution temperature from 25 ℃ to 75 ℃. The TREF-GPC cross-fractionation results show that the main component is collected at around 68 ℃. The molecular weight of the components in the high elution temperatures of 60 ℃ to 75 ℃ is from 2.0× 10^3 g/mol to 2.0 × 10^6 g/mol, and the relative amount is more than 80%. In the low elution temperature region below 50 ℃, the molecular weights of the components range from 1.0 × 10^3 g/mol to 1.6 × 10^4 g/mol, and the relative amount is less than 10%. In the DSC results, the melting peaks of the fractions gradually increase from 80.1℃ to 108.8 ℃ with elution temperature. In the SSA thermal fractionation, each resin fraction shows a broad range of endotherm with multiple melting peaks (more than eight peaks). The melting peaks shift toward high temperatures with the elution temperature. The characteristic chain microstructure for the resin is also discussed in detail. |
---|---|
ISSN: | 0256-7679 1439-6203 |
DOI: | 10.1007/s10118-015-1609-z |