Molecular Mechanisms of Phagosome Formation
Phagocytosis refers to the active process that allows cells to take up large particulate material upon binding to surface receptors. The discovery of phagocytosis in 1883 by Elie Metchnikoff, leading to the concept that specialized cells are implicated in the defense against microbes, was one of the...
Gespeichert in:
Veröffentlicht in: | Microbiology spectrum 2016-06, Vol.4 (3) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Phagocytosis refers to the active process that allows cells to take up large particulate material upon binding to surface receptors. The discovery of phagocytosis in 1883 by Elie Metchnikoff, leading to the concept that specialized cells are implicated in the defense against microbes, was one of the starting points of the field of immunology. After more than a century of research, phagocytosis is now appreciated to be a widely used process that enables the cellular uptake of a remarkable variety of particles, including bacteria, fungi, parasites, viruses, dead cells, and assorted debris and solid materials. Uptake of foreign particles is performed almost exclusively by specialized myeloid cells, commonly termed "professional phagocytes": neutrophils, monocytes, macrophages, and dendritic cells. Phagocytosis of microbes not only stops or at least restricts the spread of infection but also plays an important role in regulating the innate and adaptive immune responses. Activation of the myeloid cells upon phagocytosis leads to the secretion of cytokines and chemokines that convey signals to a variety of immune cells. Moreover, foreign antigens generated by the degradation of microbes following phagocytosis are loaded onto the major histocompatibility complex for presentation to specific T lymphocytes. However, phagocytosis is not restricted to professional myeloid phagocytes; an expanding diversity of cell types appear capable of engulfing apoptotic bodies and debris, playing a critical role in tissue remodeling and in the clearance of billions of effete cells every day. |
---|---|
ISSN: | 2165-0497 2165-0497 |
DOI: | 10.1128/microbiolspec.MCHD-0013-2015 |