Evidence for an Unfolding/Threading Mechanism for Protein Disaggregation by Saccharomyces cerevisiae Hsp104
Saccharomyces cerevisiae Hsp104, a hexameric member of the Hsp100/Clp subfamily of AAA+ ATPases with two nucleotide binding domains (NBD1 and 2), refolds aggregated proteins in conjunction with Hsp70 molecular chaperones. Hsp104 may act as a âmolecular crowbarâ to pry aggregates apart and/or may...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2004-07, Vol.279 (28), p.29139-29146 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Saccharomyces cerevisiae Hsp104, a hexameric member of the Hsp100/Clp subfamily of AAA+ ATPases with two nucleotide binding domains (NBD1 and 2),
refolds aggregated proteins in conjunction with Hsp70 molecular chaperones. Hsp104 may act as a âmolecular crowbarâ to pry
aggregates apart and/or may extract proteins from aggregates by unfolding and threading them through the axial channel of
the Hsp104 hexamer. Targeting Tyr-662, located in a Gly-Tyr-Val-Gly motif that forms part of the axial channel loop in NBD2,
we created conservative (Phe and Trp) and non-conservative (Ala and Lys) amino acid substitutions. Each of these Hsp104 derivatives
was comparable to the wild type protein in their ability to hydrolyze ATP, assemble into hexamers, and associate with heat-shock-induced
aggregates in living cells. However, only those with conservative substitutions complemented the thermotolerance defect of
a Î hsp104 yeast strain and promoted refolding of aggregated protein in vitro . Monitoring fluorescence from Trp-662 showed that titration of fully assembled molecules with either ATP or ADP progressively
quenches fluorescence, suggesting that nucleotide binding determines the position of the loop within the axial channel. A
Glu to Lys substitution at residue 645 in the NBD2 axial channel strongly alters the nucleotide-induced change in fluorescence
of Trp-662 and specifically impairs in protein refolding. These data establish that the structural integrity of the axial
channel through NBD2 is required for Hsp104 function and support the proposal that Hsp104 and ClpB use analogous unfolding/threading
mechanisms to promote disaggregation and refolding that other Hsp100s use to promote protein degradation. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.M403777200 |