Application of geostatistical methods to estimation of water flow from upper reservoir of Azad pumped storage power plant

The objective of this paper is to estimate water seepage from the upper reservoir of Azad pumped storage power plant, based on combined geotechnical investigations and geostatistical methods. In order to select the optimum water tightening alternative, such as clay blanket, concrete cover (or concre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of geosciences 2013-07, Vol.6 (7), p.2571-2579
Hauptverfasser: Aalianvari, A., Maleki Tehrani, M., Soltanimohammadi, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The objective of this paper is to estimate water seepage from the upper reservoir of Azad pumped storage power plant, based on combined geotechnical investigations and geostatistical methods. In order to select the optimum water tightening alternative, such as clay blanket, concrete cover (or concrete lining), geomembrane, asphalt cover, etc., estimation of water seepage from the reservoir is essential. Six exploratory boreholes were drilled at the pumped storage reservoir area and permeability tests (Lugeon tests) were conducted in all of them. Records at the boreholes have been considered as the main source for seepage calculations. Due to expansion of upper reservoir and a few boreholes, distribution of permeability and permeability changes in the reservoir area is not an indicator for reservoir. In this research using geostatistical method (Kriging), Lugeon values have been estimated for walls of reservoir. According to correspondence between estimated permeability distribution and geological conditions, the estimated values are acceptable. In addition, results show that in about 60% of tests, permeability is very high and potential of water seepage is very dangerous. Afterward, seepage was estimated for reservoir by using both analytical (Vedernikov method) and numerical method. Results from both methods are very close together and the average seepage is around 280,000 m 3 /day according to analytical and numerical results. Regarding results and general geological considerations, seepage is concentrated at fault zones. Results show that using appropriate permeability distribution, the estimated values of water seepage are acceptable and reliable. Due to the high amount of water seepage and economical value of water in this region, water tightening is necessary.
ISSN:1866-7511
1866-7538
DOI:10.1007/s12517-012-0528-3