Fully Balanced Fluids do not Improve Microvascular Oxygenation, Acidosis and Renal Function in a Rat Model of Endotoxemia

ABSTRACTThe expectation of fluid therapy in patients with septic shock is that it corrects hypovolemia, with the aim of restoring tissue perfusion and oxygenation and organ function. This study investigated whether different types of resuscitation fluids were effective in improving renal microcircul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shock (Augusta, Ga.) Ga.), 2016-07, Vol.46 (1), p.83-91
Hauptverfasser: Ergin, Bulent, Zafrani, Lara, Kandil, Asli, Baasner, Silke, Lupp, Corinna, Demirci, Cihan, Westphal, Martin, Ince, Can
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACTThe expectation of fluid therapy in patients with septic shock is that it corrects hypovolemia, with the aim of restoring tissue perfusion and oxygenation and organ function. This study investigated whether different types of resuscitation fluids were effective in improving renal microcirculatory oxygenation, acidosis, oxidative stress, and renal function in a rat model of endotoxemic shock. Five groups of rats were useda sham group, a lipopolysaccharide (LPS) group, and three LPS groups that received 30 mL/kg/h of 0.9% sodium chloride (0.9% NaCl), a new bicarbonate buffered crystalloid solution closely resembling the composition of plasma (FB-Cxt) or a hydroxyethyl starch-ringer acetate solution. Systemic hemodynamic variables, renal blood flow, microvascular oxygenation, oxidative/nitrosative stress, and renal function were measured. LPS-induced shock was only partially resolved by fluid administration. Animals became arterially hypotensive despite adequate central venous pressure. Hydroxyethyl starch-ringer acetate was more effective at improving arterial pressures and renal blood flow than 0.9% NaCl or FB-Cxt. Fluids had marginal effects on pH and HCO3 levels irrespective of the buffer, or on renal μPO2 and dysfunction. Colloids increased the markers of renal oxidative stress (P 
ISSN:1073-2322
1540-0514
DOI:10.1097/SHK.0000000000000573