Peroxiredoxin-null Yeast Cells Are Hypersensitive to Oxidative Stress and Are Genomically Unstable

Peroxiredoxins are a family of abundant peroxidases found in all organisms. Although these antioxidant enzymes are thought to be critically involved in cellular defense and redox signaling, their exact physiological roles are largely unknown. In this study, we took a genetic approach to address the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2004-05, Vol.279 (22), p.23207-23213
Hauptverfasser: Wong, Chi-Ming, Siu, Kam-Leung, Jin, Dong-Yan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Peroxiredoxins are a family of abundant peroxidases found in all organisms. Although these antioxidant enzymes are thought to be critically involved in cellular defense and redox signaling, their exact physiological roles are largely unknown. In this study, we took a genetic approach to address the functions of peroxiredoxins in budding yeast. We generated and characterized a yeast mutant lacking all five peroxiredoxins. The quintuple peroxiredoxin-null mutant was still viable, though the growth rate was lower under normal aerobic conditions. Although peroxiredoxins are not essential for cell viability, peroxiredoxin-null yeast cells were more susceptible to oxidative and nitrosative stress. In the complete absence of peroxiredoxins, the expression of other antioxidant proteins including glutathione peroxidase and glutathione reductase was induced. In addition, the quintuple mutant was hypersensitive to glutathione depletion. Thus, the glutathione system might cooperate with other antioxidant enzymes to compensate for peroxiredoxin deficiency. Interestingly, the peroxiredoxinnull yeast cells displayed an increased rate of spontaneous mutations that conferred resistance to canavanine. This mutator phenotype was rescued by yeast peroxiredoxin Tsa1p, but not by its active-site mutant defective for peroxidase activity. Our findings suggest that the antioxidant function of peroxiredoxins is important for maintaining genome stability in eukaryotic cells.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M402095200