Automatic detection of social rhythms in bipolar disorder
To evaluate the feasibility of automatically assessing the Social Rhythm Metric (SRM), a clinically-validated marker of stability and rhythmicity for individuals with bipolar disorder (BD), using passively-sensed data from smartphones. Seven patients with BD used smartphones for 4 weeks passively co...
Gespeichert in:
Veröffentlicht in: | Journal of the American Medical Informatics Association : JAMIA 2016-05, Vol.23 (3), p.538-543 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 543 |
---|---|
container_issue | 3 |
container_start_page | 538 |
container_title | Journal of the American Medical Informatics Association : JAMIA |
container_volume | 23 |
creator | Abdullah, Saeed Matthews, Mark Frank, Ellen Doherty, Gavin Gay, Geri Choudhury, Tanzeem |
description | To evaluate the feasibility of automatically assessing the Social Rhythm Metric (SRM), a clinically-validated marker of stability and rhythmicity for individuals with bipolar disorder (BD), using passively-sensed data from smartphones.
Seven patients with BD used smartphones for 4 weeks passively collecting sensor data including accelerometer, microphone, location, and communication information to infer behavioral and contextual patterns. Participants also completed SRM entries using a smartphone app.
We found that automated sensing can be used to infer the SRM score. Using location, distance traveled, conversation frequency, and non-stationary duration as inputs, our generalized model achieves root-mean-square-error of 1.40, a reasonable performance given the range of SRM score (0-7). Personalized models further improve performance with mean root-mean-square-error of 0.92 across users. Classifiers using sensor streams can predict stable (SRM score ≥3.5) and unstable (SRM score |
doi_str_mv | 10.1093/jamia/ocv200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1795880565</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1795880565</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-3ab26b113459d33c7c32b5acfcc14f47ed69b71e932cdd89cea67f9720a8ec583</originalsourceid><addsrcrecordid>eNo9kDtPwzAYRS0EoqWwMSOPDIT6EcfxWFW8pEosILFZzmdHdZXUxXaQ-u8JtDDdOxyd4SB0Tck9JYrPN6b3Zh7gixFygqZUMFkoWX6cjp9UshCEyQm6SGlDCK0YF-dowiolJSVsitRiyKE32QO2LjvIPmxxaHEK4E2H43qf133Cfosbvwudidj6FKJ18RKdtaZL7uq4M_T--PC2fC5Wr08vy8WqAK5ELrhpWNVQykuhLOcggbNGGGgBaNmW0tlKNZI6xRlYWytwppKtkoyY2oGo-QzdHry7GD4Hl7LufQLXdWbrwpA0lUrUNRGVGNG7AwoxpBRdq3fR9ybuNSX6J5b-jaUPsUb85mgemt7Zf_ivDv8GfYtnNQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1795880565</pqid></control><display><type>article</type><title>Automatic detection of social rhythms in bipolar disorder</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Abdullah, Saeed ; Matthews, Mark ; Frank, Ellen ; Doherty, Gavin ; Gay, Geri ; Choudhury, Tanzeem</creator><creatorcontrib>Abdullah, Saeed ; Matthews, Mark ; Frank, Ellen ; Doherty, Gavin ; Gay, Geri ; Choudhury, Tanzeem</creatorcontrib><description>To evaluate the feasibility of automatically assessing the Social Rhythm Metric (SRM), a clinically-validated marker of stability and rhythmicity for individuals with bipolar disorder (BD), using passively-sensed data from smartphones.
Seven patients with BD used smartphones for 4 weeks passively collecting sensor data including accelerometer, microphone, location, and communication information to infer behavioral and contextual patterns. Participants also completed SRM entries using a smartphone app.
We found that automated sensing can be used to infer the SRM score. Using location, distance traveled, conversation frequency, and non-stationary duration as inputs, our generalized model achieves root-mean-square-error of 1.40, a reasonable performance given the range of SRM score (0-7). Personalized models further improve performance with mean root-mean-square-error of 0.92 across users. Classifiers using sensor streams can predict stable (SRM score ≥3.5) and unstable (SRM score <3.5) states with high accuracy (precision: 0.85 and recall: 0.86).
Automatic smartphone sensing is a feasible approach for inferring rhythmicity, a key marker of wellbeing for individuals with BD.</description><identifier>ISSN: 1067-5027</identifier><identifier>EISSN: 1527-974X</identifier><identifier>DOI: 10.1093/jamia/ocv200</identifier><identifier>PMID: 26977102</identifier><language>eng</language><publisher>England</publisher><subject>Adult ; Bipolar Disorder - physiopathology ; Bipolar Disorder - psychology ; Feasibility Studies ; Female ; Humans ; Male ; Middle Aged ; Monitoring, Physiologic - methods ; Periodicity ; Smartphone ; Social Behavior</subject><ispartof>Journal of the American Medical Informatics Association : JAMIA, 2016-05, Vol.23 (3), p.538-543</ispartof><rights>The Author 2016. Published by Oxford University Press on behalf of the American Medical Informatics Association. All rights reserved. For Permissions, please email: journals.permissions@oup.com.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-3ab26b113459d33c7c32b5acfcc14f47ed69b71e932cdd89cea67f9720a8ec583</citedby><cites>FETCH-LOGICAL-c395t-3ab26b113459d33c7c32b5acfcc14f47ed69b71e932cdd89cea67f9720a8ec583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26977102$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abdullah, Saeed</creatorcontrib><creatorcontrib>Matthews, Mark</creatorcontrib><creatorcontrib>Frank, Ellen</creatorcontrib><creatorcontrib>Doherty, Gavin</creatorcontrib><creatorcontrib>Gay, Geri</creatorcontrib><creatorcontrib>Choudhury, Tanzeem</creatorcontrib><title>Automatic detection of social rhythms in bipolar disorder</title><title>Journal of the American Medical Informatics Association : JAMIA</title><addtitle>J Am Med Inform Assoc</addtitle><description>To evaluate the feasibility of automatically assessing the Social Rhythm Metric (SRM), a clinically-validated marker of stability and rhythmicity for individuals with bipolar disorder (BD), using passively-sensed data from smartphones.
Seven patients with BD used smartphones for 4 weeks passively collecting sensor data including accelerometer, microphone, location, and communication information to infer behavioral and contextual patterns. Participants also completed SRM entries using a smartphone app.
We found that automated sensing can be used to infer the SRM score. Using location, distance traveled, conversation frequency, and non-stationary duration as inputs, our generalized model achieves root-mean-square-error of 1.40, a reasonable performance given the range of SRM score (0-7). Personalized models further improve performance with mean root-mean-square-error of 0.92 across users. Classifiers using sensor streams can predict stable (SRM score ≥3.5) and unstable (SRM score <3.5) states with high accuracy (precision: 0.85 and recall: 0.86).
Automatic smartphone sensing is a feasible approach for inferring rhythmicity, a key marker of wellbeing for individuals with BD.</description><subject>Adult</subject><subject>Bipolar Disorder - physiopathology</subject><subject>Bipolar Disorder - psychology</subject><subject>Feasibility Studies</subject><subject>Female</subject><subject>Humans</subject><subject>Male</subject><subject>Middle Aged</subject><subject>Monitoring, Physiologic - methods</subject><subject>Periodicity</subject><subject>Smartphone</subject><subject>Social Behavior</subject><issn>1067-5027</issn><issn>1527-974X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNo9kDtPwzAYRS0EoqWwMSOPDIT6EcfxWFW8pEosILFZzmdHdZXUxXaQ-u8JtDDdOxyd4SB0Tck9JYrPN6b3Zh7gixFygqZUMFkoWX6cjp9UshCEyQm6SGlDCK0YF-dowiolJSVsitRiyKE32QO2LjvIPmxxaHEK4E2H43qf133Cfosbvwudidj6FKJ18RKdtaZL7uq4M_T--PC2fC5Wr08vy8WqAK5ELrhpWNVQykuhLOcggbNGGGgBaNmW0tlKNZI6xRlYWytwppKtkoyY2oGo-QzdHry7GD4Hl7LufQLXdWbrwpA0lUrUNRGVGNG7AwoxpBRdq3fR9ybuNSX6J5b-jaUPsUb85mgemt7Zf_ivDv8GfYtnNQ</recordid><startdate>20160501</startdate><enddate>20160501</enddate><creator>Abdullah, Saeed</creator><creator>Matthews, Mark</creator><creator>Frank, Ellen</creator><creator>Doherty, Gavin</creator><creator>Gay, Geri</creator><creator>Choudhury, Tanzeem</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20160501</creationdate><title>Automatic detection of social rhythms in bipolar disorder</title><author>Abdullah, Saeed ; Matthews, Mark ; Frank, Ellen ; Doherty, Gavin ; Gay, Geri ; Choudhury, Tanzeem</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-3ab26b113459d33c7c32b5acfcc14f47ed69b71e932cdd89cea67f9720a8ec583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Adult</topic><topic>Bipolar Disorder - physiopathology</topic><topic>Bipolar Disorder - psychology</topic><topic>Feasibility Studies</topic><topic>Female</topic><topic>Humans</topic><topic>Male</topic><topic>Middle Aged</topic><topic>Monitoring, Physiologic - methods</topic><topic>Periodicity</topic><topic>Smartphone</topic><topic>Social Behavior</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdullah, Saeed</creatorcontrib><creatorcontrib>Matthews, Mark</creatorcontrib><creatorcontrib>Frank, Ellen</creatorcontrib><creatorcontrib>Doherty, Gavin</creatorcontrib><creatorcontrib>Gay, Geri</creatorcontrib><creatorcontrib>Choudhury, Tanzeem</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdullah, Saeed</au><au>Matthews, Mark</au><au>Frank, Ellen</au><au>Doherty, Gavin</au><au>Gay, Geri</au><au>Choudhury, Tanzeem</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic detection of social rhythms in bipolar disorder</atitle><jtitle>Journal of the American Medical Informatics Association : JAMIA</jtitle><addtitle>J Am Med Inform Assoc</addtitle><date>2016-05-01</date><risdate>2016</risdate><volume>23</volume><issue>3</issue><spage>538</spage><epage>543</epage><pages>538-543</pages><issn>1067-5027</issn><eissn>1527-974X</eissn><abstract>To evaluate the feasibility of automatically assessing the Social Rhythm Metric (SRM), a clinically-validated marker of stability and rhythmicity for individuals with bipolar disorder (BD), using passively-sensed data from smartphones.
Seven patients with BD used smartphones for 4 weeks passively collecting sensor data including accelerometer, microphone, location, and communication information to infer behavioral and contextual patterns. Participants also completed SRM entries using a smartphone app.
We found that automated sensing can be used to infer the SRM score. Using location, distance traveled, conversation frequency, and non-stationary duration as inputs, our generalized model achieves root-mean-square-error of 1.40, a reasonable performance given the range of SRM score (0-7). Personalized models further improve performance with mean root-mean-square-error of 0.92 across users. Classifiers using sensor streams can predict stable (SRM score ≥3.5) and unstable (SRM score <3.5) states with high accuracy (precision: 0.85 and recall: 0.86).
Automatic smartphone sensing is a feasible approach for inferring rhythmicity, a key marker of wellbeing for individuals with BD.</abstract><cop>England</cop><pmid>26977102</pmid><doi>10.1093/jamia/ocv200</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1067-5027 |
ispartof | Journal of the American Medical Informatics Association : JAMIA, 2016-05, Vol.23 (3), p.538-543 |
issn | 1067-5027 1527-974X |
language | eng |
recordid | cdi_proquest_miscellaneous_1795880565 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adult Bipolar Disorder - physiopathology Bipolar Disorder - psychology Feasibility Studies Female Humans Male Middle Aged Monitoring, Physiologic - methods Periodicity Smartphone Social Behavior |
title | Automatic detection of social rhythms in bipolar disorder |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T20%3A56%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20detection%20of%20social%20rhythms%20in%20bipolar%20disorder&rft.jtitle=Journal%20of%20the%20American%20Medical%20Informatics%20Association%20:%20JAMIA&rft.au=Abdullah,%20Saeed&rft.date=2016-05-01&rft.volume=23&rft.issue=3&rft.spage=538&rft.epage=543&rft.pages=538-543&rft.issn=1067-5027&rft.eissn=1527-974X&rft_id=info:doi/10.1093/jamia/ocv200&rft_dat=%3Cproquest_cross%3E1795880565%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1795880565&rft_id=info:pmid/26977102&rfr_iscdi=true |