Automatic detection of social rhythms in bipolar disorder

To evaluate the feasibility of automatically assessing the Social Rhythm Metric (SRM), a clinically-validated marker of stability and rhythmicity for individuals with bipolar disorder (BD), using passively-sensed data from smartphones. Seven patients with BD used smartphones for 4 weeks passively co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Medical Informatics Association : JAMIA 2016-05, Vol.23 (3), p.538-543
Hauptverfasser: Abdullah, Saeed, Matthews, Mark, Frank, Ellen, Doherty, Gavin, Gay, Geri, Choudhury, Tanzeem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To evaluate the feasibility of automatically assessing the Social Rhythm Metric (SRM), a clinically-validated marker of stability and rhythmicity for individuals with bipolar disorder (BD), using passively-sensed data from smartphones. Seven patients with BD used smartphones for 4 weeks passively collecting sensor data including accelerometer, microphone, location, and communication information to infer behavioral and contextual patterns. Participants also completed SRM entries using a smartphone app. We found that automated sensing can be used to infer the SRM score. Using location, distance traveled, conversation frequency, and non-stationary duration as inputs, our generalized model achieves root-mean-square-error of 1.40, a reasonable performance given the range of SRM score (0-7). Personalized models further improve performance with mean root-mean-square-error of 0.92 across users. Classifiers using sensor streams can predict stable (SRM score ≥3.5) and unstable (SRM score
ISSN:1067-5027
1527-974X
DOI:10.1093/jamia/ocv200