Quantum and classical dynamics of H + CaCl(X (2)Σ(+)) → HCl + Ca((1)S) reaction and vibrational energy levels of the HCaCl complex
We carried out accurate quantum wave packet as well as quasi-classical trajectory (QCT) calculations for H + CaCl (νi = 0, ji = 0) reaction occurring on an adiabatic ground state using the recent ab initio potential energy surface to obtain the quantum and QCT reaction probabilities for several part...
Gespeichert in:
Veröffentlicht in: | Physical chemistry chemical physics : PCCP 2016-06, Vol.18 (23), p.15673-15685 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We carried out accurate quantum wave packet as well as quasi-classical trajectory (QCT) calculations for H + CaCl (νi = 0, ji = 0) reaction occurring on an adiabatic ground state using the recent ab initio potential energy surface to obtain the quantum and QCT reaction probabilities for several partial waves (J = 0, 10, and 20) as well as state resolved QCT integral and differential cross sections. The complete list of vibrational energy levels supported by the intermediate HCaCl complex is also obtained using the Lanczos algorithm. The QCT reaction probabilities show excellent agreement with the quantum ones except for the failure in reproducing the highly oscillatory resonance structure. Despite the fact that the reaction is exothermic and the existence of a barrier that is energetically lower than the bottom of the reactant valley, the reaction probability for J = 0 shows threshold-like behavior and the reactivity all through the energies is very low ( |
---|---|
ISSN: | 1463-9084 |
DOI: | 10.1039/c6cp00189k |