Ultra-small lipid-dendrimer hybrid nanoparticles as a promising strategy for antibiotic delivery: In vitro and in silico studies

[Display omitted] The purpose of this study was to explore the preparation of a new lipid-dendrimer hybrid nanoparticle (LDHN) system to effectively deliver vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) infections. Spherical LDHNs with particle size, polydispersity index and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of pharmaceutics 2016-05, Vol.504 (1-2), p.1-10
Hauptverfasser: Sonawane, Sandeep J., Kalhapure, Rahul S., Rambharose, Sanjeev, Mocktar, Chunderika, Vepuri, Suresh B., Soliman, Mahmoud, Govender, Thirumala
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] The purpose of this study was to explore the preparation of a new lipid-dendrimer hybrid nanoparticle (LDHN) system to effectively deliver vancomycin against methicillin-resistant Staphylococcus aureus (MRSA) infections. Spherical LDHNs with particle size, polydispersity index and zeta potential of 52.21±0.22nm, 0.105±0.01, and −14.2±1.49mV respectively were prepared by hot stirring and ultrasonication using Compritol 888 ATO, G4 PAMAM- succinamic acid dendrimer, and Kolliphor RH-40. Vancomycin encapsulation efficiency (%) in LDHNs was almost 4.5-fold greater than in lipid-polymer hybrid nanoparticles formulated using Eudragit RS 100. Differential scanning calorimetry and Fourier transform-infrared studies confirmed the formation of LDHNs. The interactions between the drug-dendrimer complex and lipid molecules using in silico modeling revealed the molecular mechanism behind the enhanced encapsulation and stability. Vancomycin was released from LDHNs over the period of 72h with zero order kinetics and super case II transport mechanism. The minimum inhibitory concentration (MIC) against S. aureus and MRSA were 15.62μg/ml and 7.81μg/ml respectively. Formulation showed sustained activity with MIC of 62.5μg/ml against S. aureus and 500μg/ml against MRSA at the end of 72 and 54h period respectively. The results suggest that the LDHN system can be an effective strategy to combat resistant infections.
ISSN:0378-5173
1873-3476
DOI:10.1016/j.ijpharm.2016.03.021