Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota)
[Display omitted] •Endophytes illuminate Xylariaceae circumscription and phylogenetic structure.•Endophytes occur in lineages previously not known for endophytism.•Boreal and temperate lichens and non-flowering plants commonly host Xylariaceae.•Many Xylariaceae have endophytic and saprotrophic life...
Gespeichert in:
Veröffentlicht in: | Molecular phylogenetics and evolution 2016-05, Vol.98, p.210-232 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | [Display omitted]
•Endophytes illuminate Xylariaceae circumscription and phylogenetic structure.•Endophytes occur in lineages previously not known for endophytism.•Boreal and temperate lichens and non-flowering plants commonly host Xylariaceae.•Many Xylariaceae have endophytic and saprotrophic life stages and are widespread generalists.
The Xylariaceae (Sordariomycetes) comprise one of the largest and most diverse families of Ascomycota, with at least 85 accepted genera and ca. 1343 accepted species. In addition to their frequent occurrence as saprotrophs, members of the family often are found as endophytes in living tissues of phylogenetically diverse plants and lichens. Many of these endophytes remain sterile in culture, precluding identification based on morphological characters. Previous studies indicate that endophytes are highly diverse and represent many xylariaceous genera; however, phylogenetic analyses at the family level generally have not included endophytes, such that their contributions to understanding phylogenetic relationships of Xylariaceae are not well known. Here we use a multi-locus, cumulative supermatrix approach to integrate 92 putative species of fungi isolated from plants and lichens into a phylogenetic framework for Xylariaceae. Our collection spans 1933 isolates from living and senescent tissues in five biomes across the continental United States, and here is analyzed in the context of previously published sequence data from described species and additional taxon sampling of type specimens from culture collections. We found that the majority of strains obtained in our surveys can be classified in the hypoxyloid and xylaroid subfamilies, although many also were found outside of these lineages (as currently circumscribed). Many endophytes were placed in lineages previously not known for endophytism. Most endophytes appear to represent novel species, but inferences are limited by potential gaps in public databases. By linking our data, publicly available sequence data, and records of ascomata, we identify many geographically widespread, host-generalist clades capable of symbiotic associations with diverse photosynthetic partners. Concomitant with such cosmopolitan host use and distributions, many xylariaceous endophytes appear to inhabit both living and non-living plant tissues, with potentially important roles as saprotrophs. Overall, our study reveals major gaps in the availability of multi-locus datasets and metadata for this ic |
---|---|
ISSN: | 1055-7903 1095-9513 |
DOI: | 10.1016/j.ympev.2016.02.010 |