Phenotypic identification of Porphyromonas gingivalis validated with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry
Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P. gingivalis in huma...
Gespeichert in:
Veröffentlicht in: | Microbial pathogenesis 2016-05, Vol.94, p.112-116 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis. This study used matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to assess the accuracy of a rapid phenotypic identification scheme for detection of cultivable P. gingivalis in human subgingival plaque biofilms.
A total of 314 fresh cultivable subgingival isolates from 38 adults with chronic periodontitis were presumptively identified on anaerobically-incubated enriched Brucella blood agar primary isolation plates as P. gingivalis based on dark-pigmented colony morphology, lack of a brick-red autofluorescence reaction under long-wave ultraviolet light, and a positive CAAM fluorescence test for trypsin-like enzyme activity. Each presumptive P. gingivalis isolate, and a panel of other human subgingival bacterial species, were subjected to MALDI-TOF mass spectrometry analysis using a benchtop mass spectrometer equipped with software containing mass spectra for P. gingivalis in its reference library of bacterial protein profiles. A MALDI-TOF mass spectrometry log score of ≥1.7 was required for species identification of the subgingival isolates.
All 314 (100%) presumptive P. gingivalis subgingival isolates were confirmed as P. gingivalis with MALDI-TOF mass spectrometry analysis (Cohen's kappa coefficient = 1.0). MALDI-TOF mass spectrometry log scores between 1.7 and 1.9, and ≥2.0, were found for 92 (29.3%) and 222 (70.7%), respectively, of the presumptive P. gingivalis clinical isolates. No other tested bacterial species was identified as P. gingivalis by MALDI-TOF mass spectrometry.
Rapid phenotypic identification of cultivable P. gingivalis in human subgingival biofilm specimens was found to be 100% accurate with MALDI-TOF mass spectrometry. These findings provide validation for the continued use of P. gingivalis research data based on this species identification methodology.
•Porphyromonas gingivalis is a major bacterial pathogen in human periodontitis.•Rapid phenotypic methods have been used to identify of cultivable P. gingivalis.•MALDI-TOF mass spectrometry used to assess accuracy of phenotypic identification.•Phenotypic identification of cultivable P. gingivalis found to be 100% accurate.•Study findings validate continued use of phenotypic identification of P gingivalis. |
---|---|
ISSN: | 0882-4010 1096-1208 |
DOI: | 10.1016/j.micpath.2016.01.021 |