The potential of computed crystal energy landscapes to aid solid-form development

•Crystal structure prediction studies have been carried out with the pharmaceutical industry.•Crystal energy landscapes can help to define solid form landscapes.•Crystal structure prediction studies guide experiments to find new polymorphs.•The value of crystal structure prediction extends beyond ri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug discovery today 2016-06, Vol.21 (6), p.912-923
Hauptverfasser: Price, Sarah L., Reutzel-Edens, Susan M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Crystal structure prediction studies have been carried out with the pharmaceutical industry.•Crystal energy landscapes can help to define solid form landscapes.•Crystal structure prediction studies guide experiments to find new polymorphs.•The value of crystal structure prediction extends beyond right-sizing solid form screens.•Realistic crystal energy landscapes of smaller pharmaceuticals are now within reach. Solid-form screening to identify all solid forms of an active pharmaceutical ingredient (API) has become increasingly important in ensuring the quality by design of pharmaceutical products and their manufacturing processes. However, despite considerable enlargement of the range of techniques that have been shown capable of producing novel solid forms, it is possible that practically important forms might not be found in the short timescales currently allowed for solid-form screening. Here, we report on the state-of-the-art use of computed crystal energy landscapes to complement pharmaceutical solid-form screening. We illustrate how crystal energy landscapes can help establish molecular-level understanding of the crystallization behavior of APIs and enhance the ability of solid-form screening to facilitate pharmaceutical development. Could computational crystal structure prediction accelerate solid form development?
ISSN:1359-6446
1878-5832
DOI:10.1016/j.drudis.2016.01.014