Determination of the lipophilicity of Salvia miltiorrhiza Radix et Rhizoma (danshen root) ingredients by microemulsion liquid chromatography: optimization using cluster analysis and a linear solvation energy relationship-based method
We evaluated 26 microemulsion liquid chromatography (MELC) systems for their potential as high‐throughput screening platforms capable of modeling the partitioning behaviors of drug compounds in an n‐octanol–water system, and for predicting the lipophilicity of those compounds (i.e. logP values). The...
Gespeichert in:
Veröffentlicht in: | Biomedical chromatography 2016-07, Vol.30 (7), p.996-1006 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We evaluated 26 microemulsion liquid chromatography (MELC) systems for their potential as high‐throughput screening platforms capable of modeling the partitioning behaviors of drug compounds in an n‐octanol–water system, and for predicting the lipophilicity of those compounds (i.e. logP values). The MELC systems were compared by cluster analysis and a linear solvation energy relationship (LSER)‐based method, and the optimal system was identified by comparing their Euclidean distances with the LSER coefficients. The most effective MELC system had a mobile phase consisting of 6.0% (w/w) Brij35 (a detergent), 6.6% (w/w) butanol, 0.8% (w/w) cyclohexane, 86.6% (w/w) buffer solution and 8 mm cetyltrimethyl ammonium bromide. The reliability of the established platform was confirmed by the agreement between the experimental data and the predicted values. The logP values of the ingredients of danshen root (Salvia miltiorrhiza Radix et Rhizoma) were then predicted. Copyright © 2015 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0269-3879 1099-0801 |
DOI: | 10.1002/bmc.3639 |