A cylindrically symmetric “micro-Mott” electron polarimeter

A small, novel, cylindrically symmetric Mott electron polarimeter is described. The effective Sherman function, Seff , or analyzing power, for 20 kV Au target bias with a 1.3 keV energy loss window is 0.16 ± 0.01, where uncertainty in the measurement is due primarily to uncertainty in the incident e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2016-05, Vol.87 (5), p.053302-053302
Hauptverfasser: Clayburn, N. B., Brunkow, E., Burtwistle, S. J., Rutherford, G. H., Gay, T. J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A small, novel, cylindrically symmetric Mott electron polarimeter is described. The effective Sherman function, Seff , or analyzing power, for 20 kV Au target bias with a 1.3 keV energy loss window is 0.16 ± 0.01, where uncertainty in the measurement is due primarily to uncertainty in the incident electron polarization. For an energy loss window of 0.5 keV, Seff reaches its maximum value of 0.24 ± 0.02. The device’s maximum efficiency, I/Io , defined as the detected count rate divided by the incident particle rate, is 3.7 ± 0.2 × 10−4 at 20 keV. The figure-of-merit of the device, η, is defined as S eff 2 I I o and equals 9.0 ± 1.6 × 10−6. Potential sources of false asymmetries due to detector electronic asymmetry and beam misalignment have been investigated. The new polarimeter’s performance is compared to published results for similar compact retarding-field Mott polarimeters, and it is concluded that this device has a relatively large Seff and low efficiency. SIMION® electron trajectory simulations and Sherman function calculations are presented to explain the differences in performance between this device and previous designs. This design has an Seff that is insensitive to spatial beam fluctuations and, for an energy loss window >0.5 keV, negligible background due to spurious ion and X-ray production at the target.
ISSN:0034-6748
1089-7623
DOI:10.1063/1.4946995