Disease dynamics in cyclic populations of field voles (Microtus agrestis): cowpox virus and vole tuberculosis (Mycobacterium microti)

The possible role of pathogens in rodent population cycles has been largely neglected since Elton's 'epidemic hypothesis' of 1931. To revisit this question, 12 adjacent, cyclic but out-of-phase populations of field voles (Microtus agrestis) in North East England were studied and the i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2004-04, Vol.271 (1541), p.859-867
Hauptverfasser: Cavanagh, Rachel D., Lambin, Xavier, Ergon, Torbjørn, Bennett, Malcolm, Graham, Isla M., van Soolingen, Dick, Begon, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The possible role of pathogens in rodent population cycles has been largely neglected since Elton's 'epidemic hypothesis' of 1931. To revisit this question, 12 adjacent, cyclic but out-of-phase populations of field voles (Microtus agrestis) in North East England were studied and the initial results are presented here. The prevalences of antibodies to cowpox virus and of clinical signs of Mycobacterium microti infection (vole tuberculosis) showed delayed (not direct) density dependence (with a lag of three to six months). This did not result from changes in population structure, even though there were such changes associated with the different phases of the cycle. The prevalences rose as vole numbers rose, and peaked as numbers declined. The apparent lag in the numerical response of infection prevalence to changes in host abundance is consistent with the hypothesis that diseases, singly or in combination, play a hitherto underestimated role in the dynamics of cyclic populations.
ISSN:0962-8452
1471-2954
DOI:10.1098/rspb.2003.2667