Probes for biomolecules detection based on RET-enhanced fluorescence polarization

Fluorescent probes based on the principle of resonance energy transfer (RET) or the principle of fluorescence polarization (FP) are already used to detect biomolecules independently. However, there were no in-depth studies about the impact of RET on FP. Also, very few studies gave a comprehensive an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biosensors & bioelectronics 2016-05, Vol.79, p.802-809
Hauptverfasser: Ren, Dahai, Wang, Jun, Wang, Bin, You, Zheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Fluorescent probes based on the principle of resonance energy transfer (RET) or the principle of fluorescence polarization (FP) are already used to detect biomolecules independently. However, there were no in-depth studies about the impact of RET on FP. Also, very few studies gave a comprehensive analysis on how to effectively design such a fluorescent probe. Based on the principle of resonance energy transfer (RET), we constructed fluorescent probes (SA-488-sub-nanogold) using streptavidin labeled Alexa488 (SA-488), nanogold and biotinylated substrate peptide (biotin-subpeptide). The influence of the structure and the ingredients of the substrate peptide were discussed. After SA-488 was combined with the biotin-subpeptide and the nanogold, its fluorescence intensity (FI) would be suppressed due to the energy transfer, leading to an increase in its volume and mass. The suppression of the FI led to a decrease in SA-488's effective concentration, and the increase in the volume or mass prolonged the SA-488's rotational relaxation time. Both changes increased SA-488's polarization in the solution. Therefore, the FP performance of the probe is enhanced by the RET. Using the probe, trypsin and biotin were detected by the change in both fluorescence intensity and fluorescence polarization, showing higher reliability, higher sensitivity, and a lower detection limit. •We report a probe based on FRET and fluorescence polarization.•Higher sensitivity and lower detection limit were obtained.•Its quenching and recovery efficiency could be 95%, much better than simple PI.•Fluorescent molecules concentration and other factors are first analyzed in detail.•It can be expanded to the model and other probes of “fluorescence-linker-quencher”.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2016.01.015