Progress in Spin-on Hard Mask Materials for Advanced Lithography

Hard masks used in lithography processes play a vital role in pattern transfer to the desired substrate. Hard mask materials can be categorized into organic and inorganic types. Examples of organic type hard masks include amorphous carbon, organo siloxane based materials with reflection control prop...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Photopolymer Science and Technology 2014/07/08, Vol.27(4), pp.503-509
Hauptverfasser: Padmanaban, Munirathna, Cho, JoonYeon, Kudo, Takanori, Rahman, Dalil, Yao, Huirong, McKenzie, Douglas, Dioses, Alberto, Mullen, Salem, Wolfer, Elizabeth, Yamamoto, Kazuma, Cao, Yi, Her, YoungJun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hard masks used in lithography processes play a vital role in pattern transfer to the desired substrate. Hard mask materials can be categorized into organic and inorganic types. Examples of organic type hard masks include amorphous carbon, organo siloxane based materials with reflection control properties. These organic hard masks are deposited either by CVD process or spin-on processes. SiN, SiON and TiN are some examples of inorganic type hard masks and typically these hard masks are deposited through CVD process. In either type, key requirement is etch resistance to either oxygen rich plasma or halogen rich plasma depending on the substrate to be etched away. However, in the advanced lithography processes, in addition to good etch resistance, they also need to possess good wet removability, fill capability in high aspect ratio contacts and trenches. In this paper, we discuss the advances made in the spin-on organic and inorganic hard masks. The spin-on option provides high throughput and several alternate material options compared to CVD option. Spin-on carbon (SOC) is a high carbon containing polymer solution and as a coating material, the polymers need to be soluble in organic solvent and insoluble after curing for coating upper layer materials. Recent progress made in good filling, low outgas, high thermal stability and planarization properties required for double and quadruple patterning is presented. Similarly, novel spin-on type inorganic formulations providing Ti, W, and Zr oxide hard masks with high etch selectivity, wet removal capability and good shelf-life stability are described. These novel AZ(R) Spin-on MHM formulations can be used in several new applications and can potentially replace any metal, metal oxide, metal nitride or silicon-containing hard mask films currently deposited using CVD process in the semiconductor manufacturing process.
ISSN:0914-9244
1349-6336
DOI:10.2494/photopolymer.27.503