Stepwise Construction of Extra-Large Heterometallic Calixarene-Based Cages

Utilizing presynthesized large Na2Ni12Ln2 clusters (Ln = Dy and Tb) supported by calixarene as molecular building blocks (MBBs), we have obtained a series of cationic trigonal prismatic heterometallic organic nanocages (HMONCs) with tunable sizes through a stepwise method. Specially, in each structu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2015-04, Vol.54 (7), p.3183-3188
Hauptverfasser: Su, Kongzhao, Jiang, Feilong, Qian, Jinjie, Chen, Lian, Pang, Jiandong, Bawaked, Salem M, Mokhtar, Mohamed, Al-Thabaiti, Shaeel A, Hong, Maochun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Utilizing presynthesized large Na2Ni12Ln2 clusters (Ln = Dy and Tb) supported by calixarene as molecular building blocks (MBBs), we have obtained a series of cationic trigonal prismatic heterometallic organic nanocages (HMONCs) with tunable sizes through a stepwise method. Specially, in each structure of the HMONCs, three linear dicarboxylate linkers substitute the peripheral coordinated acetate ligands of two Na2Ni12Ln2 clusters to form an unprecedented Na4Ni24Ln4 HMONC through a M2L3 condensation. Moreover, magnetic study reveals that the Na2Ni12Dy2 core retains its slow magnetic relaxation behavior. Gas sorption behaviors of these HMONCs were also studied. To the best of our knowledge, these HMONCs built from large heterotrimetallic Na2Ni12Ln2 MBBs, which are based on smaller Ni4-calix ones, have not been reported in any other cages to date. In addition, this research also provides a new strategy for the design and construction of HMONCs with predictable structures and functional properties.
ISSN:0020-1669
1520-510X
DOI:10.1021/ic502677g