Microstructures and Superconducting Properties of BHO-doped SmBa2Cu3Oy Thin Films Grown by Changing the Growth Temperature using the PLD-LTG Technique
REBa2Cu3Oy (RE: Rare Earth) is expected to be a promising superconducting material on the grounds that it has a high critical temperature (Tc). According to our previous work, it was reported that BaMO3 (BMO, M=Zr, Sn, Hf, etc.) nanorod formation depends on the substrate temperature and volume fract...
Gespeichert in:
Veröffentlicht in: | TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 2015/07/25, Vol.50(7), pp.362-367 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | REBa2Cu3Oy (RE: Rare Earth) is expected to be a promising superconducting material on the grounds that it has a high critical temperature (Tc). According to our previous work, it was reported that BaMO3 (BMO, M=Zr, Sn, Hf, etc.) nanorod formation depends on the substrate temperature and volume fraction of BHO. We fabricated SmBa2Cu3Oy (SmBCO) films with 3.0 vol.% BaHfO3 (BHO) nanorods using a pulsed laser deposition (PLD) method adopting a low-temperature growth (LTG) technique. Using the LTG technique, the lower temperature limit of c-axis orientation expands to the low-temperature region. However, the growth process of BHO has not yet been clarified. In this study, in order to clarify the growth mechanism of BHO nanorods, we changed the substrate temperature during the deposition process. As a result, the BHO number density decreased slowly as the film grew under increasingly warmer substrate temperatures. On the other hand, the BHO number density decreased dramatically under a sudden increase in substrate temperature. From transmission electron microscopic images, BHO nanorods were overgrown by the SmBCO near the film surface under increasing slowly substrate temperature. Both films showed high performance of Jc under a low magnetic field due to decreasing the matching field. |
---|---|
ISSN: | 0389-2441 1880-0408 |
DOI: | 10.2221/jcsj.50.362 |