Phase control of three-dimensional atom localization in a four-level atomic system in Lambda configuration

A scheme of phase-sensitive three-dimensional atom localization (3DAL) is presented based on absorption measurement of the weak probe field in a driven four-level [Lambda]-type atomic system with twofold lower levels in which the atom interacts with three orthogonal standing wave fields. Because of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. B, Optical physics Optical physics, 2016-01, Vol.33 (1), p.41-45
Hauptverfasser: Hamedi, H. R., Mehmannavaz, M. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A scheme of phase-sensitive three-dimensional atom localization (3DAL) is presented based on absorption measurement of the weak probe field in a driven four-level [Lambda]-type atomic system with twofold lower levels in which the atom interacts with three orthogonal standing wave fields. Because of the space-dependent coupling of the atom field in three dimensions, the position probability distribution of the passer atom through the standing wave fields can be straightforwardly assessed by gauging the resultant absorption spectra. It is found that, by appropriately tuning the system parameters, various 3D periodic isosurface patterns of localization including polyhedrons, waves, cylinders, diamonds, lattices, bowling pins, tetrahedrons, cubes, and spheres can be formed and the high-precision and high-resolution 3DAL can be manipulated. Because of the closed-loop structure in this atomic system, the probe absorption is dependent on the relative phase of applied fields. The phase dependence of 3DAL in also discussed.
ISSN:0740-3224
1520-8540
DOI:10.1364/JOSAB.33.000041