AMS method for depth profiling of trace elements concentration in materials – Construction and applications

The need to investigate the behavior of solid state materials on the impact/retention/repulsion/contamination/impregnation with special trace elements or radioactive elements has driven us to develop a modified Accelerator Mass Spectrometry (AMS) analyzing method that is able to perform the measurem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section B, Beam interactions with materials and atoms Beam interactions with materials and atoms, 2015-10, Vol.361, p.250-256
Hauptverfasser: Stan-Sion, C., Enachescu, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The need to investigate the behavior of solid state materials on the impact/retention/repulsion/contamination/impregnation with special trace elements or radioactive elements has driven us to develop a modified Accelerator Mass Spectrometry (AMS) analyzing method that is able to perform the measurement of the concentration depth profile of an element in a host material. This upgraded method that we call AMS-depth profiling method (AMS-DP) measures continuously the concentration of a trace element in a given sample material as a function of the depth from the surface (e.g., tritium in carbon, deuterium in tungsten, etc.). However, in order to perform depth profiling, common AMS facilities have to undergo several changes: a new replaceable sample target-holder has to be constructed to accept small plates of solid material as samples; their position has to be adjusted in the focus point of the sputter beam; crater rim effects of the produced hole in the sample have to be avoided or removed from the registered events in the detector; suitable reference samples have to be prepared and used for calibration. All procedures are presented in the paper together with several applications.
ISSN:0168-583X
1872-9584
DOI:10.1016/j.nimb.2015.04.050