Waste-gasification efficiency of a two-stage fluidized-bed gasification system

The results showed that when the operating temperature increased from 700 to 900°C, the molar percentage of H2 in the syngas produced by the two-stage gasification process increased from 19.4 to 29.7mol% and that the total gas yield and gas-heating value also increased. When CaO was used as the addi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Waste management (Elmsford) 2016-02, Vol.48, p.250-256
Hauptverfasser: Liu, Zhen-Shu, Lin, Chiou-Liang, Chang, Tsung-Jen, Weng, Wang-Chang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The results showed that when the operating temperature increased from 700 to 900°C, the molar percentage of H2 in the syngas produced by the two-stage gasification process increased from 19.4 to 29.7mol% and that the total gas yield and gas-heating value also increased. When CaO was used as the additive, the molar percentage of CO2 in the syngas decreased, and the molar percentage of H2 increased. When activated carbon was used, the molar percentage of CH4 in the syngas increased, and the total gas yield and gas-heating value increased. Overall, CaO had better effects on the production of H2, whereas activated carbon clearly enhanced the total gas yield and gas-heating value. [Display omitted] •Two-stage fluidized bed gasifier was used to discuss the gasification efficiency.•The molar percentage of H2 increased with temperature from 19.4% to 29.7mol%.•CaO in stage II had better effects on the production of H2.•Activated carbon clearly enhanced the total gas yield and gas-heating value. This study employed a two-stage fluidized-bed gasifier as a gasification reactor and two additives (CaO and activated carbon) as the Stage-II bed material to investigate the effects of the operating temperature (700°C, 800°C, and 900°C) on the syngas composition, total gas yield, and gas-heating value during simulated waste gasification. The results showed that when the operating temperature increased from 700 to 900°C, the molar percentage of H2 in the syngas produced by the two-stage gasification process increased from 19.4 to 29.7mol% and that the total gas yield and gas-heating value also increased. When CaO was used as the additive, the molar percentage of CO2 in the syngas decreased, and the molar percentage of H2 increased. When activated carbon was used, the molar percentage of CH4 in the syngas increased, and the total gas yield and gas-heating value increased. Overall, CaO had better effects on the production of H2, whereas activated carbon clearly enhanced the total gas yield and gas-heating value.
ISSN:0956-053X
1879-2456
DOI:10.1016/j.wasman.2015.12.001