Genetically evolved action selection mechanism in a behavior-based system for target tracking
The success of a behavior-based system relies largely on its Action Selection Mechanism (ASM) module, which is basically a behavior coordination method of either arbitration or command fusion type. Deciding on the right coordination method for ASM when executing a given mission in an arbitrary envir...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2014-06, Vol.133, p.84-94 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The success of a behavior-based system relies largely on its Action Selection Mechanism (ASM) module, which is basically a behavior coordination method of either arbitration or command fusion type. Deciding on the right coordination method for ASM when executing a given mission in an arbitrary environment can be a huge obstacle. Providing the system with some kind of Artificial Intelligence (AI) to deal with the dynamics of a given task would be highly recommended. In this paper, an evolutionary process has been employed in a behavior-based system to generate a suitable ASM based on a system's mission scenario. A Genetic Algorithm (GA) is used to train the weights of a Multi-layer Perceptron (MLP) feed-forward artificial neural network in identifying a suitable formulation of ASM. Implementation of such systems in a target tracking mission has shown positive results. Depending on the mission scenario, the evolved ASM can dynamically manage the coordination method in order to achieve the overall system objective. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/j.neucom.2013.11.028 |