Generalization performance of support vector classifiers for density level detection

This paper investigates the generalization performance of support vector classifiers for density level detection (DLD) when the input term belongs to a separable Hilbert space. The estimate of learning rate for DLD problem is established by Rademacher average and iterative techniques, which is indep...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) 2013-11, Vol.119, p.434-438
Hauptverfasser: Chen, Hong, Zhou, Yicong, Tang, Yi, Tang, Yuan Yan, Pan, Zhibin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper investigates the generalization performance of support vector classifiers for density level detection (DLD) when the input term belongs to a separable Hilbert space. The estimate of learning rate for DLD problem is established by Rademacher average and iterative techniques, which is independent of the assumption of covering number used in the previous literature.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2013.03.014