Generalization performance of support vector classifiers for density level detection
This paper investigates the generalization performance of support vector classifiers for density level detection (DLD) when the input term belongs to a separable Hilbert space. The estimate of learning rate for DLD problem is established by Rademacher average and iterative techniques, which is indep...
Gespeichert in:
Veröffentlicht in: | Neurocomputing (Amsterdam) 2013-11, Vol.119, p.434-438 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper investigates the generalization performance of support vector classifiers for density level detection (DLD) when the input term belongs to a separable Hilbert space. The estimate of learning rate for DLD problem is established by Rademacher average and iterative techniques, which is independent of the assumption of covering number used in the previous literature. |
---|---|
ISSN: | 0925-2312 1872-8286 |
DOI: | 10.1016/j.neucom.2013.03.014 |