Synthesis of functionalized fluorescent gold nanoclusters for acid phosphatase sensing

A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the im...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2015-10, Vol.7 (39), p.16372-16380
Hauptverfasser: Sun, Jian, Yang, Fan, Yang, Xiurong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel and convenient one-pot but two-step synthesis of fluorescent gold nanoclusters, incorporating glutathione (GSH) and 11-mercaptoundecanoic acid (MUA) as the functionalized ligands (i.e. AuNCs@GSH/MUA), is demonstrated. Herein, the mixing of HAuCl4 and GSH in aqueous solution results in the immediate formation of non-fluorescent GSH-Au(+) complexes, and then a class of ∼2.6 nm GSH-coated AuNCs (AuNCs@GSH) with mild orange-yellow fluorescence after several days. Interestingly, the intense orange-red emitting ∼1.7 nm AuNCs@GSH/MUA can be synthesized within seconds by introducing an alkaline aqueous solution of MUA into the GSH-Au(+) complexes or AuNC@GSH solution. Subsequently, a reliable AuNC@GSH/MUA-based real-time assay of acid phosphatase (ACP) is established for the first time, inspired by the selective coordination of Fe(3+) with surface ligands of AuNCs, the higher binding affinity between the pyrophosphate ion (PPi) and Fe(3+), and the hydrolysis of PPi into orthophosphate by ACP. Our fluorescent chemosensor can also be applied to assay ACP in a real biological sample and, furthermore, to screen the inhibitor of ACP. This report paves a new avenue for synthesizing AuNCs based on either the bottom-up reduction or top-down etching method, establishing real-time fluorescence assays for ACP by means of PPi as the substrate, and further exploring the sensing applications of fluorescent AuNCs.
ISSN:2040-3364
2040-3372
DOI:10.1039/c5nr04826e