A three-dimensional integrated nanogenerator for effectively harvesting sound energy from the environment
An integrated triboelectric nanogenerator (ITNG) with a three-dimensional structure benefiting sound propagation and adsorption is demonstrated to more effectively harvest sound energy with improved output performance. With different multifunctional integrated layers working harmonically, it could g...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2016-03, Vol.8 (9), p.4938-4944 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An integrated triboelectric nanogenerator (ITNG) with a three-dimensional structure benefiting sound propagation and adsorption is demonstrated to more effectively harvest sound energy with improved output performance. With different multifunctional integrated layers working harmonically, it could generate a short-circuit current up to 2.1 mA, an open-circuit voltage up to 232 V and the maximum charging rate can reach 453 μC s(-1) for a 1 mF capacitor, which are 4.6 times, 2.6 times and 7.4 times the highest reported values, respectively. Further study shows that the ITNG works well under sound in a wide range of sound intensity levels (SILs) and frequencies, and its output is sensitive to the SIL and frequency of the sound, which reveals that the ITNG can act as a self-powered active sensor for real-time noise surveillance and health care. Moreover, this generator can be used to directly power the Fe(OH)3 sol electrophoresis and shows great potential as a wireless power supply in the electrochemical industry. |
---|---|
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/c5nr09087c |