Quantum spin dimers from chiral dissipation in cold-atom chains

We consider the nonequilibrium dynamics of a driven dissipative spin chain with chiral coupling to a one-dimensional (1D) bosonic bath, and its atomic implementation with a two-species mixture of cold quantum gases. The reservoir is represented by a spin-orbit coupled 1D quasicondensate of atoms in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2014-12, Vol.113 (23), p.237203-237203, Article 237203
Hauptverfasser: Ramos, Tomás, Pichler, Hannes, Daley, Andrew J, Zoller, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the nonequilibrium dynamics of a driven dissipative spin chain with chiral coupling to a one-dimensional (1D) bosonic bath, and its atomic implementation with a two-species mixture of cold quantum gases. The reservoir is represented by a spin-orbit coupled 1D quasicondensate of atoms in a magnetized phase, while the spins are identified with motional states of a separate species of atoms in an optical lattice. The chirality of reservoir excitations allows the spins to couple differently to left- and right-moving modes, which in our atomic setup can be tuned from bidirectional to purely unidirectional. Remarkably, this leads to a pure steady state in which pairs of neighboring spins form dimers that decouple from the remainder of the chain. Our results also apply to current experiments with two-level emitters coupled to photonic waveguides.
ISSN:0031-9007
1079-7114
DOI:10.1103/physrevlett.113.237203