Quantum spin dimers from chiral dissipation in cold-atom chains
We consider the nonequilibrium dynamics of a driven dissipative spin chain with chiral coupling to a one-dimensional (1D) bosonic bath, and its atomic implementation with a two-species mixture of cold quantum gases. The reservoir is represented by a spin-orbit coupled 1D quasicondensate of atoms in...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2014-12, Vol.113 (23), p.237203-237203, Article 237203 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the nonequilibrium dynamics of a driven dissipative spin chain with chiral coupling to a one-dimensional (1D) bosonic bath, and its atomic implementation with a two-species mixture of cold quantum gases. The reservoir is represented by a spin-orbit coupled 1D quasicondensate of atoms in a magnetized phase, while the spins are identified with motional states of a separate species of atoms in an optical lattice. The chirality of reservoir excitations allows the spins to couple differently to left- and right-moving modes, which in our atomic setup can be tuned from bidirectional to purely unidirectional. Remarkably, this leads to a pure steady state in which pairs of neighboring spins form dimers that decouple from the remainder of the chain. Our results also apply to current experiments with two-level emitters coupled to photonic waveguides. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.113.237203 |