Insight into Vulcanization Mechanism of Novel Binary Accelerators for Natural Rubber

A novel TU derivative, N-phenyl-N'-(γ-triethoxysilane)-propyl thiourea (STU), is prepared and its binary accelerator system is investigated in detail. Compared to the control references, the optimum curing time of NR compounds with STU is the shortest, indicating a more nucleophilic reaction occurs....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese journal of polymer science 2014-08, Vol.32 (8), p.1077-1085
Hauptverfasser: Yang, Shu-yan, Jia, Zhi-xin, Liu, Lan, Fu, Wei-wen, Jia, De-min, Luo, Yuan-fang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A novel TU derivative, N-phenyl-N'-(γ-triethoxysilane)-propyl thiourea (STU), is prepared and its binary accelerator system is investigated in detail. Compared to the control references, the optimum curing time of NR compounds with STU is the shortest, indicating a more nucleophilic reaction occurs. The Py-GC/MS results present that the phenyl iso- thiocyanate fragment still remains in the NPUSTU compounds with or without extracting treatment, but no silane segment can be found in the vulcanizate with extracting treatment. Vibrations of C=S, NH and aromatic ring in FTIR experiments and a new methyne carbon peak, as well as the peaks of phenyl group of STU, in the solid state 13C-NMR experiments are found in the NR/STU vulcanizate with extracting treatment. Moreover, the crosslinking density of vulcanizates with STU evolves to lower level, indicating the sulfur atom of STU does not contribute to the sulfur crosslinking. Therefore, a new vulcanization kinetic mechanism of STU is propounded that the thiourea groups can graft to the rubber main chains as pendant groups by chemical bonds during the vulcanization process, which is in accordance with the experimental observations quite well.
ISSN:0256-7679
1439-6203
DOI:10.1007/s10118-014-1486-x