Achieving High Strains in Sheet Metal Characterization Using the In-Plane Torsion Test

The in-plane torsion test is used to determine plastic flow curves for sheet metals. Very high strains of up to an equivalent strain of 1.0 can be measured since there are no edge effects in a plane torsion specimen. In combination with optical strain measurement, an efficient evaluation method for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2013-06, Vol.554-557, p.77-85
Hauptverfasser: Yin, Qing, Tekkaya, A. Erman, Kolbe, Jörg, Haupt, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The in-plane torsion test is used to determine plastic flow curves for sheet metals. Very high strains of up to an equivalent strain of 1.0 can be measured since there are no edge effects in a plane torsion specimen. In combination with optical strain measurement, an efficient evaluation method for this test was developed. However, the achievable strain varies for each material. The slippage between the inner clamps and the specimen was found to be one main limiting effect. In order to improve the clamping capability, different surface corrugations are applied at the inner clamping tool. Four sheet materials, DC06, DP600, AA6016, and AA5182 are selected for testing this new clamping setup. While the flow curve of DC06 is determined until a strain of 1.0 and above, such high values cannot be achieved for the other materials. It can be shown that the measurable strain can be increased by the choice of the surface corrugation features at the inner clamping. For the DP steel and the aluminum alloys, the flow curve can be determined until equivalent plastic strains of 0.5 to 0.6, which is also a significant improvement compared to many other sheet metal testing methods.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.554-557.77