Time-domain separation of optical properties from structural transitions in resonantly bonded materials
Femtosecond optical spectroscopy and single-shot electron diffraction measurements during the photoinduced amorphization of the phase-change material Ge 2 Sb 2 Te 5 demonstrate that optical properties can be separated from the structural state. The extreme electro-optical contrast between crystallin...
Gespeichert in:
Veröffentlicht in: | Nature materials 2015-10, Vol.14 (10), p.991-995 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 995 |
---|---|
container_issue | 10 |
container_start_page | 991 |
container_title | Nature materials |
container_volume | 14 |
creator | Waldecker, Lutz Miller, Timothy A. Rudé, Miquel Bertoni, Roman Osmond, Johann Pruneri, Valerio Simpson, Robert E. Ernstorfer, Ralph Wall, Simon |
description | Femtosecond optical spectroscopy and single-shot electron diffraction measurements during the photoinduced amorphization of the phase-change material Ge
2
Sb
2
Te
5
demonstrate that optical properties can be separated from the structural state.
The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage
1
and future applications include universal memories
2
, flexible displays
3
, reconfigurable optical circuits
4
,
5
, and logic devices
6
. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge
2
Sb
2
Te
5
during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes. |
doi_str_mv | 10.1038/nmat4359 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1793263492</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3959766081</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-d535b08b47101f293b1dfb431ce6db165504a5674aefa98d6bab458e7a0c20e83</originalsourceid><addsrcrecordid>eNqNkc1O3TAQhS1UBPSCxBOgSN3QRcDjvzjLCkFbCYkNrCM7mbRGiZ3azoK36bPwZDW6l7ZixWpGmm_OnNEh5BToBVCuL_1ssuCy3SNHIBpVC6Xoh10PwNgh-ZjSI6UMpFQH5JApBly3-oj8vHcz1kOYjfNVwsVEk13wVRirsGTXm6laYlgwZoepGmOYq5Tj2uc1llGOxif3spCqsh8xBW98np4qG_yAw_PvYgyjM1M6JvtjKXiyqxvycHN9f_Wtvr37-v3qy23dSxC5HiSXlmorGqAwspZbGEYrOPSoBgtKSiqMVI0wOJpWD8oaK6TGxtCeUdR8Q863usX2rxVT7maXepwm4zGsqYOm5Uxx0bJ3oKCYFEzSgn56gz6GNfrySKFUQ7XQAv4J9jGkFHHsluhmE586oN1LUN1rUAU92wmudsbhL_iaTAE-b4FURv4Hxv8uvhX7A2k8nlc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1767084841</pqid></control><display><type>article</type><title>Time-domain separation of optical properties from structural transitions in resonantly bonded materials</title><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Waldecker, Lutz ; Miller, Timothy A. ; Rudé, Miquel ; Bertoni, Roman ; Osmond, Johann ; Pruneri, Valerio ; Simpson, Robert E. ; Ernstorfer, Ralph ; Wall, Simon</creator><creatorcontrib>Waldecker, Lutz ; Miller, Timothy A. ; Rudé, Miquel ; Bertoni, Roman ; Osmond, Johann ; Pruneri, Valerio ; Simpson, Robert E. ; Ernstorfer, Ralph ; Wall, Simon</creatorcontrib><description>Femtosecond optical spectroscopy and single-shot electron diffraction measurements during the photoinduced amorphization of the phase-change material Ge
2
Sb
2
Te
5
demonstrate that optical properties can be separated from the structural state.
The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage
1
and future applications include universal memories
2
, flexible displays
3
, reconfigurable optical circuits
4
,
5
, and logic devices
6
. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge
2
Sb
2
Te
5
during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4359</identifier><identifier>PMID: 26213898</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1019/584 ; 639/301/119/1002 ; 639/301/119/995 ; 639/766/1130 ; Amorphous materials ; Biomaterials ; Bonding ; Condensed Matter Physics ; Crystal lattices ; Crystallinity ; Data storage ; Dielectrics ; Lattices ; letter ; Logic ; Materials Science ; Nanotechnology ; Optical and Electronic Materials ; Optical properties ; Phase transitions ; Physics ; Silicon ; Spectroscopy</subject><ispartof>Nature materials, 2015-10, Vol.14 (10), p.991-995</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Oct 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-d535b08b47101f293b1dfb431ce6db165504a5674aefa98d6bab458e7a0c20e83</citedby><cites>FETCH-LOGICAL-c514t-d535b08b47101f293b1dfb431ce6db165504a5674aefa98d6bab458e7a0c20e83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nmat4359$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nmat4359$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26213898$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Waldecker, Lutz</creatorcontrib><creatorcontrib>Miller, Timothy A.</creatorcontrib><creatorcontrib>Rudé, Miquel</creatorcontrib><creatorcontrib>Bertoni, Roman</creatorcontrib><creatorcontrib>Osmond, Johann</creatorcontrib><creatorcontrib>Pruneri, Valerio</creatorcontrib><creatorcontrib>Simpson, Robert E.</creatorcontrib><creatorcontrib>Ernstorfer, Ralph</creatorcontrib><creatorcontrib>Wall, Simon</creatorcontrib><title>Time-domain separation of optical properties from structural transitions in resonantly bonded materials</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Femtosecond optical spectroscopy and single-shot electron diffraction measurements during the photoinduced amorphization of the phase-change material Ge
2
Sb
2
Te
5
demonstrate that optical properties can be separated from the structural state.
The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage
1
and future applications include universal memories
2
, flexible displays
3
, reconfigurable optical circuits
4
,
5
, and logic devices
6
. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge
2
Sb
2
Te
5
during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.</description><subject>639/301/1019/584</subject><subject>639/301/119/1002</subject><subject>639/301/119/995</subject><subject>639/766/1130</subject><subject>Amorphous materials</subject><subject>Biomaterials</subject><subject>Bonding</subject><subject>Condensed Matter Physics</subject><subject>Crystal lattices</subject><subject>Crystallinity</subject><subject>Data storage</subject><subject>Dielectrics</subject><subject>Lattices</subject><subject>letter</subject><subject>Logic</subject><subject>Materials Science</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Optical properties</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Silicon</subject><subject>Spectroscopy</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc1O3TAQhS1UBPSCxBOgSN3QRcDjvzjLCkFbCYkNrCM7mbRGiZ3azoK36bPwZDW6l7ZixWpGmm_OnNEh5BToBVCuL_1ssuCy3SNHIBpVC6Xoh10PwNgh-ZjSI6UMpFQH5JApBly3-oj8vHcz1kOYjfNVwsVEk13wVRirsGTXm6laYlgwZoepGmOYq5Tj2uc1llGOxif3spCqsh8xBW98np4qG_yAw_PvYgyjM1M6JvtjKXiyqxvycHN9f_Wtvr37-v3qy23dSxC5HiSXlmorGqAwspZbGEYrOPSoBgtKSiqMVI0wOJpWD8oaK6TGxtCeUdR8Q863usX2rxVT7maXepwm4zGsqYOm5Uxx0bJ3oKCYFEzSgn56gz6GNfrySKFUQ7XQAv4J9jGkFHHsluhmE586oN1LUN1rUAU92wmudsbhL_iaTAE-b4FURv4Hxv8uvhX7A2k8nlc</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Waldecker, Lutz</creator><creator>Miller, Timothy A.</creator><creator>Rudé, Miquel</creator><creator>Bertoni, Roman</creator><creator>Osmond, Johann</creator><creator>Pruneri, Valerio</creator><creator>Simpson, Robert E.</creator><creator>Ernstorfer, Ralph</creator><creator>Wall, Simon</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20151001</creationdate><title>Time-domain separation of optical properties from structural transitions in resonantly bonded materials</title><author>Waldecker, Lutz ; Miller, Timothy A. ; Rudé, Miquel ; Bertoni, Roman ; Osmond, Johann ; Pruneri, Valerio ; Simpson, Robert E. ; Ernstorfer, Ralph ; Wall, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-d535b08b47101f293b1dfb431ce6db165504a5674aefa98d6bab458e7a0c20e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/301/1019/584</topic><topic>639/301/119/1002</topic><topic>639/301/119/995</topic><topic>639/766/1130</topic><topic>Amorphous materials</topic><topic>Biomaterials</topic><topic>Bonding</topic><topic>Condensed Matter Physics</topic><topic>Crystal lattices</topic><topic>Crystallinity</topic><topic>Data storage</topic><topic>Dielectrics</topic><topic>Lattices</topic><topic>letter</topic><topic>Logic</topic><topic>Materials Science</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Optical properties</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Silicon</topic><topic>Spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Waldecker, Lutz</creatorcontrib><creatorcontrib>Miller, Timothy A.</creatorcontrib><creatorcontrib>Rudé, Miquel</creatorcontrib><creatorcontrib>Bertoni, Roman</creatorcontrib><creatorcontrib>Osmond, Johann</creatorcontrib><creatorcontrib>Pruneri, Valerio</creatorcontrib><creatorcontrib>Simpson, Robert E.</creatorcontrib><creatorcontrib>Ernstorfer, Ralph</creatorcontrib><creatorcontrib>Wall, Simon</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Waldecker, Lutz</au><au>Miller, Timothy A.</au><au>Rudé, Miquel</au><au>Bertoni, Roman</au><au>Osmond, Johann</au><au>Pruneri, Valerio</au><au>Simpson, Robert E.</au><au>Ernstorfer, Ralph</au><au>Wall, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time-domain separation of optical properties from structural transitions in resonantly bonded materials</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2015-10-01</date><risdate>2015</risdate><volume>14</volume><issue>10</issue><spage>991</spage><epage>995</epage><pages>991-995</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Femtosecond optical spectroscopy and single-shot electron diffraction measurements during the photoinduced amorphization of the phase-change material Ge
2
Sb
2
Te
5
demonstrate that optical properties can be separated from the structural state.
The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage
1
and future applications include universal memories
2
, flexible displays
3
, reconfigurable optical circuits
4
,
5
, and logic devices
6
. Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge
2
Sb
2
Te
5
during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>26213898</pmid><doi>10.1038/nmat4359</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2015-10, Vol.14 (10), p.991-995 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1793263492 |
source | Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 639/301/1019/584 639/301/119/1002 639/301/119/995 639/766/1130 Amorphous materials Biomaterials Bonding Condensed Matter Physics Crystal lattices Crystallinity Data storage Dielectrics Lattices letter Logic Materials Science Nanotechnology Optical and Electronic Materials Optical properties Phase transitions Physics Silicon Spectroscopy |
title | Time-domain separation of optical properties from structural transitions in resonantly bonded materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A05%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time-domain%20separation%20of%20optical%20properties%20from%20structural%20transitions%20in%20resonantly%20bonded%C2%A0materials&rft.jtitle=Nature%20materials&rft.au=Waldecker,%20Lutz&rft.date=2015-10-01&rft.volume=14&rft.issue=10&rft.spage=991&rft.epage=995&rft.pages=991-995&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4359&rft_dat=%3Cproquest_cross%3E3959766081%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1767084841&rft_id=info:pmid/26213898&rfr_iscdi=true |