Time-domain separation of optical properties from structural transitions in resonantly bonded materials

Femtosecond optical spectroscopy and single-shot electron diffraction measurements during the photoinduced amorphization of the phase-change material Ge 2 Sb 2 Te 5 demonstrate that optical properties can be separated from the structural state. The extreme electro-optical contrast between crystallin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature materials 2015-10, Vol.14 (10), p.991-995
Hauptverfasser: Waldecker, Lutz, Miller, Timothy A., Rudé, Miquel, Bertoni, Roman, Osmond, Johann, Pruneri, Valerio, Simpson, Robert E., Ernstorfer, Ralph, Wall, Simon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Femtosecond optical spectroscopy and single-shot electron diffraction measurements during the photoinduced amorphization of the phase-change material Ge 2 Sb 2 Te 5 demonstrate that optical properties can be separated from the structural state. The extreme electro-optical contrast between crystalline and amorphous states in phase-change materials is routinely exploited in optical data storage 1 and future applications include universal memories 2 , flexible displays 3 , reconfigurable optical circuits 4 , 5 , and logic devices 6 . Optical contrast is believed to arise owing to a change in crystallinity. Here we show that the connection between optical properties and structure can be broken. Using a combination of single-shot femtosecond electron diffraction and optical spectroscopy, we simultaneously follow the lattice dynamics and dielectric function in the phase-change material Ge 2 Sb 2 Te 5 during an irreversible state transformation. The dielectric function changes by 30% within 100 fs owing to a rapid depletion of electrons from resonantly bonded states. This occurs without perturbing the crystallinity of the lattice, which heats with a 2-ps time constant. The optical changes are an order of magnitude larger than those achievable with silicon and present new routes to manipulate light on an ultrafast timescale without structural changes.
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat4359