Stability to the dissipative Reissner–Mindlin–Timoshenko acting on displacement equation
In this paper, we show that there exists a critical number that stabilises the Reissner–Mindlin–Timoshenko system with frictional dissipation acting only on the equation for the transverse displacement. We identify that the Reissner–Mindlin–Timoshenko system has two speed characteristics v 1 2 := K/...
Gespeichert in:
Veröffentlicht in: | European journal of applied mathematics 2016-04, Vol.27 (2), p.157-193 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we show that there exists a critical number that stabilises the Reissner–Mindlin–Timoshenko system with frictional dissipation acting only on the equation for the transverse displacement. We identify that the Reissner–Mindlin–Timoshenko system has two speed characteristics v
1
2 := K/ρ1 and v
2
2 := D/ρ2 and we show that the system is exponentially stable if only if
\begin{equation*}
v_{1}^{2}=v_{2}^{2}.
\end{equation*}
In the general case, we prove that the system is polynomially stable with optimal decay rate. Numerical experiments using finite differences are given to confirm our analytical results. Our numerical results are qualitatively in agreement with the corresponding results from dynamical in infinite dimensional. |
---|---|
ISSN: | 0956-7925 1469-4425 |
DOI: | 10.1017/S0956792515000467 |