Performance of Lime-Metakaolin Pastes and Mortars in Two Curing Conditions Containing Kaolin Wastes

Many works have shown that metakaolin is very good pozzolanic material for using in lime mortars and Portland cement mortars. Alternatively, many studies also have shown that kaolin wastes, after some treatment, can become a high quality pozzolans. Most of these studies have discussed about the micr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key Engineering Materials 2015-10, Vol.668, p.419-432
Hauptverfasser: Azeredo, Givanildo, de Azerêdo, Aline Figueirêdo Nóbrega, Carneiro, Arnaldo Manoel Pereira
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many works have shown that metakaolin is very good pozzolanic material for using in lime mortars and Portland cement mortars. Alternatively, many studies also have shown that kaolin wastes, after some treatment, can become a high quality pozzolans. Most of these studies have discussed about the microstructural characteristics and hardened properties of pastes, mortars or concretes mixes containing metakaolin or kaolin wastes cured in moist environment. In this work pastes and mortars made of metakaolin and hydrated lime (L-MK), which the metakaolin was obtained from the kaolin production waste, were assessed in their hardened state. Two curing conditions were considered: dry and moist environment; and three ages of curing (28, 90 and 180 days) were studied. Pastes were assessed by XRD and TG/DTG. In pastes according to the XRD and TG/DTG results, the main hydrated products found were strätlingite, in moist curing, and monocarboaluminate, in dry curing. Properties like flexural and compressive strengths, water absorbed capillarity and loss mass variation were studied in mortars. The results showed that mortars in dry curing presented lower strengths than one in moist curing. In moist curing mortars presented compressive strength values around 12 MPa and in dry curing this value reached 6 MPa. This fact indicate that the strätlingite maybe is responsible for the high strengths in mortars in moist curing when compares with the strengths of mortars cured in dry environment. Further the results showed that mortars in dry curing presented higher water absorbed and mass loss variation than mortars in moist curing.
ISSN:1013-9826
1662-9795
1662-9795
DOI:10.4028/www.scientific.net/KEM.668.419