A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation
In this paper, we derive a new method for a nonlinear Schrodinger system by using the square of the first-order Fourier spectral differentiation matrix D sub(1) instead of the traditional second-order Fourier spectral differentiation matrix D sub(2) to approximate the second derivative. We prove tha...
Gespeichert in:
Veröffentlicht in: | Chinese physics B 2014-12, Vol.23 (12), p.120203-1-120203-9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we derive a new method for a nonlinear Schrodinger system by using the square of the first-order Fourier spectral differentiation matrix D sub(1) instead of the traditional second-order Fourier spectral differentiation matrix D sub(2) to approximate the second derivative. We prove that the proposed method preserves the charge and energy conservation laws exactly. A deduction argument is used to prove that the numerical solution is second-order convergent to the exact solutions in || times || sub(2) norm. Some numerical results are reported to illustrate the efficiency of the new scheme in preserving the charge and energy conservation laws. |
---|---|
ISSN: | 1674-1056 1741-4199 |
DOI: | 10.1088/1674-1056/23/12/120203 |