A conservative Fourier pseudospectral algorithm for the nonlinear Schrödinger equation

In this paper, we derive a new method for a nonlinear Schrodinger system by using the square of the first-order Fourier spectral differentiation matrix D sub(1) instead of the traditional second-order Fourier spectral differentiation matrix D sub(2) to approximate the second derivative. We prove tha...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2014-12, Vol.23 (12), p.120203-1-120203-9
Hauptverfasser: Lv, Zhong-Quan, Zhang, Lu-Ming, Wang, Yu-Shun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we derive a new method for a nonlinear Schrodinger system by using the square of the first-order Fourier spectral differentiation matrix D sub(1) instead of the traditional second-order Fourier spectral differentiation matrix D sub(2) to approximate the second derivative. We prove that the proposed method preserves the charge and energy conservation laws exactly. A deduction argument is used to prove that the numerical solution is second-order convergent to the exact solutions in || times || sub(2) norm. Some numerical results are reported to illustrate the efficiency of the new scheme in preserving the charge and energy conservation laws.
ISSN:1674-1056
1741-4199
DOI:10.1088/1674-1056/23/12/120203