Thermal evolution of the Schwinger model with matrix product operators

We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2015-08, Vol.92 (3)
Hauptverfasser: Banuls, M C, Cichy, K, Cirac, J I, Jansen, K, Saito, H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate the suitability of tensor network techniques for describing the thermal evolution of lattice gauge theories. As a benchmark case, we have studied the temperature dependence of the chiral condensate in the Schwinger model, using matrix product operators to approximate the thermal equilibrium states for finite system sizes with nonzero lattice spacings. We show how these techniques allow for reliable extrapolations in bond dimension, step width, system size and lattice spacing, and for a systematic estimation and control of all error sources involved in the calculation. The reached values of the lattice spacing are small enough to capture the most challenging region of high temperatures and the final results are consistent with the analytical prediction by Sachs and Wipf over a broad temperature range.
ISSN:2470-0010
2470-0029