An Integral Mesoscopic Material Characterization Approach
In several fields of engineering the automation of the CFRP production chain is a major issue. In this production chain the forming plays a key role, as the result of the forming influences everything in the chain from the infusion step until the part mechanics. To understand the influence of the ma...
Gespeichert in:
Veröffentlicht in: | Key engineering materials 2014-05, Vol.611-612, p.280-291 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In several fields of engineering the automation of the CFRP production chain is a major issue. In this production chain the forming plays a key role, as the result of the forming influences everything in the chain from the infusion step until the part mechanics. To understand the influence of the material choice onto the forming process is a task followed by many scientists during the last 20 years. Basic tests for shear characterization like Picture Frame Test (PFT) and Bias Extension Test (BiasExt) were developed and used widely. This work deals with the comparison of the BiasExt to a fiber extraction test. The fiber extraction test is developed and used for the characterization of a woven and two non-crimp fabric material. The results are important for the process information and the judgment of primary deformation mechanisms. The tests are simulated for the unidirectional material in a mesoscopic approach and the results are compared in order to judge the capability of the mesoscopic simulation and its residual limitations. |
---|---|
ISSN: | 1013-9826 1662-9795 1662-9795 |
DOI: | 10.4028/www.scientific.net/KEM.611-612.280 |