Permanent reduction of dissipation in nanomechanical Si resonators by chemical surface protection

We report on mechanical dissipation measurements carried out on thin (∼100 nm), single-crystal silicon cantilevers with varying chemical surface termination. We find that the 1-2 nm-thick native oxide layer of silicon contributes about 85% to the friction of the mechanical resonance. We show that th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanotechnology 2015-11, Vol.26 (46), p.465501-465501
Hauptverfasser: Tao, Y, Navaretti, P, Hauert, R, Grob, U, Poggio, M, C L Degen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report on mechanical dissipation measurements carried out on thin (∼100 nm), single-crystal silicon cantilevers with varying chemical surface termination. We find that the 1-2 nm-thick native oxide layer of silicon contributes about 85% to the friction of the mechanical resonance. We show that the mechanical friction is proportional to the thickness of the oxide layer and that it crucially depends on oxide formation conditions. We further demonstrate that chemical surface protection by nitridation, liquid-phase hydrosilylation, or gas-phase hydrosilylation can inhibit rapid oxide formation in air and results in a permanent improvement of the mechanical quality factor between three- and five-fold. This improvement extends to cryogenic temperatures. Presented recipes can be directly integrated with standard cleanroom processes and may be especially beneficial for ultrasensitive nanomechanical force- and mass sensors, including silicon cantilevers, membranes, or nanowires.
ISSN:0957-4484
1361-6528
DOI:10.1088/0957-4484/26/46/465501