Influence of microfluidic shear on keratin networks in living cells
Intermediate filaments play a key role in cell mechanics, providing cells with compliance to small deformations and reinforcing them when large forces are applied. Here, we present a study of networks of keratin intermediate filaments in living cells under the influence of external forces. We expose...
Gespeichert in:
Veröffentlicht in: | New journal of physics 2013-04, Vol.15 (4), p.45025-13 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Intermediate filaments play a key role in cell mechanics, providing cells with compliance to small deformations and reinforcing them when large forces are applied. Here, we present a study of networks of keratin intermediate filaments in living cells under the influence of external forces. We expose the cells to controlled shear forces applied by microflow and investigate the response of the keratin network in situ. Our results show that bundle dynamics are reduced upon the application of shear flow. It is likely that cytoskeletal cross-talk is involved in this shear stress response via actin-keratin coupling. |
---|---|
ISSN: | 1367-2630 1367-2630 |
DOI: | 10.1088/1367-2630/15/4/045025 |