Development of hybrid wavelet packet-statistical models (WP-SM) for landslide susceptibility mapping

Landslides are recognized as one of the most important natural hazards in many areas throughout the world. Producing landslide susceptibility maps have received particular attention from a wide range of scientists. The main objective of this study was to produce landslide susceptibility maps using h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Landslides 2016-02, Vol.13 (1), p.97-114
Hauptverfasser: Moosavi, Vahid, Niazi, Yaghoub
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Landslides are recognized as one of the most important natural hazards in many areas throughout the world. Producing landslide susceptibility maps have received particular attention from a wide range of scientists. The main objective of this study was to produce landslide susceptibility maps using hybrid wavelet packet-statistical models (WP-SM). In the first step, landslide susceptibility maps were produced using single artificial neural network (ANN), support vector machine (SVM), maximum entropy (MaxEnt), and generalized linear model (GLM). In the next step, the input maps were preprocessed using different mother wavelets in different levels. Then, the hybrid models were developed using the wavelet-based preprocessed maps. Results showed that the wavelet packet transform can be effectively used to produce precise landslide susceptibility maps. It was shown that wavelet packet transform significantly enhanced the ability of the single statistical models. The kappa coefficients were increased from 0.829 to 0.941, 0.846 to 0.978, 0.744 to 0.829, and 0.735 to 0.817 in hybrid ANN, SVM, MaxEnt, and GLM, respectively. The best wavelet transform was performed using bior1.5 with a three-level decomposition. It was also recognized that MaxEnt and GLM produced approximately poor results. However, SVM performed better than the other three models both in single and hybrid forms. ANN also outperformed MaxEnt and GLM models. Spatial distribution of the susceptible area is consistent with the observed landslide distribution pattern particularly in maps obtained from the hybrid models. The produced maps showed that the general pattern of susceptible area intensively followed the pattern of roads and sensitive geological formations.
ISSN:1612-510X
1612-5118
DOI:10.1007/s10346-014-0547-0