About existence of stationary points for the Arnold–Beltrami–Childress (ABC) flow

The existence of stationary points for the dynamical system of ABC-flow is considered. The ABC-flow, a three-parameter velocity field that provides a simple stationary solution of Euler's equations in three dimensions for incompressible, inviscid fluid flows, is the prototype for the study of t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics and computation 2016-03, Vol.276, p.379-383
1. Verfasser: Ershkov, Sergey V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The existence of stationary points for the dynamical system of ABC-flow is considered. The ABC-flow, a three-parameter velocity field that provides a simple stationary solution of Euler's equations in three dimensions for incompressible, inviscid fluid flows, is the prototype for the study of turbulence (it provides a simple example of dynamical chaos). But, nevertheless, between the chaotic trajectories of the appropriate solutions of such a system we can reveal the stationary points, the deterministic basis among the chaotic behaviour of ABC-flow dynamical system. It has been proved the existence of 1 point for two partial cases of parameters {A, B, C}: (1) A = B = 1; (2) C = 1 (A² + B² = 1). Moreover, dynamical system of ABC-flow allows 3 points of such a type, depending on the meanings of parameters {A, B, C}.
ISSN:0096-3003
1873-5649
DOI:10.1016/j.amc.2015.12.038