Flexible reduced field of view magnetic resonance imaging based on single-shot spatiotemporally encoded technique

In many ultrafast imaging applications, the reduced field-of-view(r FOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporallyencoded(SPEN) method offers an inherent applicability to r FOV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics B 2015-10, Vol.24 (10), p.629-637
1. Verfasser: 李敬 蔡聪波 陈林 陈颖 屈小波 蔡淑惠
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In many ultrafast imaging applications, the reduced field-of-view(r FOV) technique is often used to enhance the spatial resolution and field inhomogeneity immunity of the images. The stationary-phase characteristic of the spatiotemporallyencoded(SPEN) method offers an inherent applicability to r FOV imaging. In this study, a flexible r FOV imaging method is presented and the superiority of the SPEN approach in r FOV imaging is demonstrated. The proposed method is validated with phantom and in vivo rat experiments, including cardiac imaging and contrast-enhanced perfusion imaging. For comparison, the echo planar imaging(EPI) experiments with orthogonal RF excitation are also performed. The results show that the signal-to-noise ratios of the images acquired by the proposed method can be higher than those obtained with the r FOV EPI. Moreover, the proposed method shows better performance in the cardiac imaging and perfusion imaging of rat kidney, and it can scan one or more regions of interest(ROIs) with high spatial resolution in a single shot. It might be a favorable solution to ultrafast imaging applications in cases with severe susceptibility heterogeneities, such as cardiac imaging and perfusion imaging. Furthermore, it might be promising in applications with separate ROIs, such as mammary and limb imaging.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/24/10/108703