All-Optical Reconstruction of Crystal Band Structure
The band structure of matter determines its properties. In solids, it is typically mapped with angle-resolved photoemission spectroscopy, in which the momentum and the energy of incoherent electrons are independently measured. Sometimes, however, photoelectrons are difficult or impossible to detect....
Gespeichert in:
Veröffentlicht in: | Physical review letters 2015-11, Vol.115 (19), p.193603-193603, Article 193603 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The band structure of matter determines its properties. In solids, it is typically mapped with angle-resolved photoemission spectroscopy, in which the momentum and the energy of incoherent electrons are independently measured. Sometimes, however, photoelectrons are difficult or impossible to detect. Here we demonstrate an all-optical technique to reconstruct momentum-dependent band gaps by exploiting the coherent motion of electron-hole pairs driven by intense midinfrared femtosecond laser pulses. Applying the method to experimental data for a semiconductor ZnO crystal, we identify the split-off valence band as making the greatest contribution to tunneling to the conduction band. Our new band structure measurement technique is intrinsically bulk sensitive, does not require a vacuum, and has high temporal resolution, making it suitable to study reactions at ambient conditions, matter under extreme pressures, and ultrafast transient modifications to band structures. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.115.193603 |