Smoothed Quadratic Energies on Meshes
In this article, we study the regularization of quadratic energies that are integrated over discrete domains. This is a fairly general setting, often found in, but not limited to, geometry processing. The standard Tikhonov regularization is widely used such that, for instance, a low-pass filter enfo...
Gespeichert in:
Veröffentlicht in: | ACM transactions on graphics 2014-12, Vol.34 (1), p.1-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we study the regularization of quadratic energies that are integrated over discrete domains. This is a fairly general setting, often found in, but not limited to, geometry processing. The standard Tikhonov regularization is widely used such that, for instance, a low-pass filter enforces smoothness of the solution. This approach, however, is independent of the energy and the concrete problem, which leads to artifacts in various applications. Instead, we propose a regularization that enforces a low variation of the energy and is problem specific by construction. Essentially, this approach corresponds to minimization with respect to a different norm. Our construction is generic and can be plugged into any quadratic energy minimization, is simple to implement, and has no significant runtime overhead. We demonstrate this for a number of typical problems and discuss the expected benefits. |
---|---|
ISSN: | 0730-0301 1557-7368 |
DOI: | 10.1145/2682627 |