Automating Image Morphing Using Structural Similarity on a Halfway Domain

The main challenge in achieving good image morphs is to create a map that aligns corresponding image elements. Our aim is to help automate this often tedious task. We compute the map by optimizing the compatibility of corresponding warped image neighborhoods using an adaptation of structural similar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACM transactions on graphics 2014-08, Vol.33 (5), p.1-12
Hauptverfasser: Liao, Jing, Lima, Rodolfo S., Nehab, Diego, Hoppe, Hugues, Sander, Pedro V., Yu, Jinhui
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main challenge in achieving good image morphs is to create a map that aligns corresponding image elements. Our aim is to help automate this often tedious task. We compute the map by optimizing the compatibility of corresponding warped image neighborhoods using an adaptation of structural similarity. The optimization is regularized by a thin-plate spline and may be guided by a few user-drawn points. We parameterize the map over a halfway domain and show that this representation offers many benefits. The map is able to treat the image pair symmetrically, model simple occlusions continuously, span partially overlapping images, and define extrapolated correspondences. Moreover, it enables direct evaluation of the morph in a pixel shader without mesh rasterization. We improve the morphs by optimizing quadratic motion paths and by seamlessly extending content beyond the image boundaries. We parallelize the algorithm on a GPU to achieve a responsive interface and demonstrate challenging morphs obtained with little effort.
ISSN:0730-0301
1557-7368
DOI:10.1145/2629494